Advertisements
Advertisements
प्रश्न
If x = `1/10` and y = `(-3)/8`, then evaluate x + y, x – y, x × y and x ÷ y.
उत्तर
Given, x = `1/10` and y = `(-3)/8`
Now, x + y = `1/10 + ((-3))/8 = 1/10 - 3/8`
= `(1 xx 4)/(10 xx 4) - (3 xx 5)/(8 xx 5)` ......[∵ LCM of 10 and 8 = 40]
= `4/40 - 15/40`
= `(4 - 15)/40`
= `-11/40`
and x – y = `1/10 - (-3/8) = 1/10 + 3/8`
= `(1 xx 4)/(10 xx 4) + (3 xx 5)/(8 xx 5)` ......[∵ LCM of 10 and 8 = 40]
= `4/40 + 15/40`
= `(4 + 15)/40`
= `19/40`
∴ Product of rational numbers = `"Product of numerators"/"Product of denominators"`
⇒ x × y = `1/10 xx ((-3))/8 = (1 xx (-3))/(10 xx 8) = (-3)/80`
and x ÷ y = `1/10 ÷ ((-3)/8)`
The reciprocal of `((-3)/8)` is `8/(-3)`
So, x ÷ y = `1/10 xx 8/(-3)`
= `(1 xx 8)/(10 xx - 3)`
= `(-8)/30`
= `(-8 ÷ 2)/(30 ÷ 2)` ......[Dividing numerator and denominator by 2]
= `(-4)/15`
APPEARS IN
संबंधित प्रश्न
Find the value of `3/13 ÷ ((-4)/65)`.
Evaluate:
`3 ÷ 3/5`
Evaluate:
`-5 ÷ (- 10/11)`
Divide:
`(-5)/8 "by" 1/4`
Find (m + n) ÷ (m - n), if:
m = `4/5` and n = `-3/10`
The value of `((-15)/23) ÷ (30/(-46))` is ________
Divide : −2 by `(-6)/(15)`
Taking x = `(-4)/9`, y = `5/12` and z = `7/18`, find the reciprocal of x + y.
Taking x = `(-4)/9`, y = `5/12` and z = `7/18`, find x ÷ (y ÷ z).
From a rope 68 m long, pieces of equal size are cut. If length of one piece is `4 1/4`m, find the number of such pieces.