Advertisements
Advertisements
प्रश्न
If x = `sqrt(2) + sqrt(3)` find `(x^2 + 1)/(x^2 - 2)`
उत्तर
x = `sqrt(2) + sqrt(3)`
x2 = `(sqrt(2) + sqrt(3))^2`
= `(sqrt(2))^2 + (sqrt(3))^2 + 2sqrt(2)*sqrt(3)`
= `2 + 3 + 2sqrt(6)`
= `5 + 2sqrt(6)`
`(x^2 + 1)/(x^2 - 2) = (5 + 2sqrt(6) + 1)/(5 + 2sqrt(6) - 2)`
= `(6 + 2sqrt(6))/(3 + 2sqrt(6))`
= `((6 + 2sqrt(6))(3 - 2sqrt(6)))/((3 + 2sqrt(6))(3 - 2sqrt(6))`
= `(18 - 12sqrt(6) + 6sqrt(6) - (2sqrt(6))^2)/(3^2 - (2sqrt(6))^2`
= `(18 - 6sqrt(6) - 4 xx 6)/(9 - 4 xx 6)`
= `(18 - 24 - 6sqrt(6))/(9 - 24)`
= `(-6 - 6sqrt(6))/(-15)`
= `(- 3(2 + 2sqrt(6)))/(-15)`
`(x^2 + 1)/(x^2 - 2) = (2 + 2sqrt(6))/5`
APPEARS IN
संबंधित प्रश्न
Simplify: `(125)^(2/3)`
Simplify: `16^((-3)/4)`
Simplify: `(- 1000)^((-2)/3)`
Simplify: `(3^-6)^(1/3)`
Simplify: `(27^((-2)/3))/(27^((-1)/3))`
Evaluate `[((256)^(-1/2))^((-1)/4)]^3`
If `(x^(1/2) + x^(- 1/2))^2 = 9/2` then find the value of `(x^(1/2) - x^(-1/2))` for x >1
Simplify and hence find the value of n:
`(3^(2"n")*9^2*3^(-"n"))/(3^(3"n"))` = 27
Find the radius of the spherical tank whose volume is `(32pi)/3` units
. Simplify by rationalising the denominator `(7 + sqrt(6))/(3 - sqrt(2))`
Simplify `1/(3 - sqrt(8)) - 1/(sqrt(8) - sqrt(7)) + 1/(sqrt(7) - sqrt(6)) - 1/(sqrt(6) - sqrt(5)) + 1/(sqrt(5) - 2)`