मराठी

If x = −3 and x = 23 are solutions of quadratic equation mx2 + 7x + n = 0, find the values of m and n. - Mathematics

Advertisements
Advertisements

प्रश्न

If x = −3 and x = `2/3` are solutions of quadratic equation mx+ 7x + n = 0, find the values of m and n.

बेरीज

उत्तर

Step 1: Sum and product of roots

Sum of roots = `-b/a, "Product of roots" = c/a` 

  • Roots: x1 = −3, x2 = `2/3`
  • Coefficients: a = m, b = 7, c = n

Step 2: Calculate sum and product of roots

`x_1 + x_2 = -3 + 2/3 = -9/3 + 2/3 = -7/3`

Using Sum of roots = `−b/a`

`-7/3 = -7/m`

Equating the numerators, m = 3

Product of roots: `x_1xxx_2 = (-3)xx 2/3 = -2`

Using Product of roots = `c/a`

`-2 = n/m`

Substitute m = 3

`-2 = n/3 => n=-6`

m = 3, n = −6

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Quadratic Equations - Exercise 5 (C) [पृष्ठ ६०]

APPEARS IN

सेलिना Mathematics [English] Class 10 ICSE
पाठ 5 Quadratic Equations
Exercise 5 (C) | Q 29 | पृष्ठ ६०

व्हिडिओ ट्यूटोरियलVIEW ALL [5]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×