Advertisements
Advertisements
प्रश्न
If x = a(cos t + t sin t) and y = a(sin t – t cos t), then `(d^2y)/(dx^2)` is ______.
पर्याय
sec3 t
at sec3 t
`(sec^3t)/(at)`
sec2 t
MCQ
रिकाम्या जागा भरा
उत्तर
If x = a(cos t + t sin t) and y = a(sin t – t cos t), then `(d^2y)/(dx^2)` is `underlinebb((sec^3t)/(at))`.
Explanation:
It is given that x = a(cos t + t sin t) and y = (sin t – t cost).
Therefore, `dx/dt` = a[–sin t + sin t + t cos t] = at cos t
`dy/dt` = a[cos t – {cos t – t sin t}] = at sin t
∴ `dy/dx = ((dy/dt))/((dx/dt)) = (at sin t)/(at cos t)` = tan t
Then, `(d^2y)/(dx^2) = d/dx(dy/dx)`
= `d/dx(tan t)`
= `d/dt(tan t)dt/dx`
= `sec^2t. dt/dx`
= `sec^2t. 1/(at cos t)`
= `(sec^3t)/(at)`
shaalaa.com
Higher Order Derivatives
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?