मराठी

If x = a(cos t + t sin t) and y = a(sin t – t cos t), then d2ydx2 is ______. -

Advertisements
Advertisements

प्रश्न

If x = a(cos t + t sin t) and y = a(sin t – t cos t), then `(d^2y)/(dx^2)` is ______.

पर्याय

  • sec3 t

  • at sec3 t

  • `(sec^3t)/(at)`

  • sec2 t

MCQ
रिकाम्या जागा भरा

उत्तर

If x = a(cos t + t sin t) and y = a(sin t – t cos t), then `(d^2y)/(dx^2)` is `underlinebb((sec^3t)/(at))`.

Explanation:

It is given that x = a(cos t + t sin t) and y = (sin t – t cost).

Therefore, `dx/dt` = a[–sin t + sin t + t cos t] = at cos t

`dy/dt` = a[cos t – {cos t – t sin t}] = at sin t

∴ `dy/dx = ((dy/dt))/((dx/dt)) = (at sin t)/(at cos t)` = tan t

Then, `(d^2y)/(dx^2) = d/dx(dy/dx)`

= `d/dx(tan t)`

= `d/dt(tan t)dt/dx`

= `sec^2t. dt/dx`

= `sec^2t. 1/(at cos t)`

= `(sec^3t)/(at)`

shaalaa.com
Higher Order Derivatives
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×