मराठी

If x = a sec θ, y = b tan θ, then dydxd2ydx2 at θ = ππ6 is: -

Advertisements
Advertisements

प्रश्न

If x = a sec θ, y = b tan θ, then `("d"^2"y")/("dx"^2)` at θ = `π/6` is:

पर्याय

  • `(-3sqrt3"b")/"a"^2`

  • `(-2sqrt3"b")/"a"`

  • `(-3sqrt3"b")/"a"`

  • `(-"b")/(3sqrt3"a"^2)`

MCQ

उत्तर

`(-3sqrt3"b")/"a"^2`

Explanation:

x = a sec θ ⇒ `"dx"/("d"θ)` = a sec θ tan θ

y = b tan θ ⇒ `"dy"/("d"θ)` = b sec2 θ

∴ `"dy"/"dx" = "b"/"a" "cosec θ"`

⇒ `("d"^2"y")/("dx"^2) = (-"b")/"a" "cosec θ". cot θ. ("d"θ)/"dx" = (-"b")/"a"^2 cot^3 θ`

∴ `[("d"^2"y")/("dx"^2)]_(θ = π/6) = (-3sqrt3"b")/"a"^2`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×