Advertisements
Advertisements
प्रश्न
If x = a sin t - b cos t, y = a cos t+ b sin t, then `"y"^3 ("d"^2"y")/"dx"^2 + x^2 + y^2` = ?
पर्याय
2
1
0
- 1
MCQ
उत्तर
0
Explanation:
We have,
x = a sin t - b cos t ...(i)
y = a cos t + b sin t ....(ii)
Squaring and adding Eqs. (i) and (ii), we get
x2 + y2 = a2 + b2
On differentiating w.r.t. 'x', we get
2x + 2y = `"dy"/"dx"` = 0
`"dy"/"dx" = (- x)/"y"`
Again differentiating w.r.t. 'x', we get
`("d"^2y)/"dx"^2 = - (("y" - x "dy"//"dx")/("y"^2)) ...[because "dy"/"dx" = - x/y]`
`=> "y"^2 ("d"^2"y")/"dx"^2 = - ("y" + x/y)`
`=> "y"^3 ("d"^2"y")/"dx"^2 + x^2 + "y"^2` = 0
shaalaa.com
Higher Order Derivatives
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?