Advertisements
Advertisements
प्रश्न
If `x/a = y/b = z/c` prove that `(2x^3 - 3y^3 + 4z^3)/(2a^3 - 3b^3 + 4c^3) = ((2x - 3y + 4z)/(2a - 3b + 4c))^3`
उत्तर
Let `x/a = y/b = z/c = k`
Then x = ak, y = bk and z = ck
L.H.S = `(2x^3 - 3y + 4z)/(2a^3 - 3b^3 + 4c^3)`
`= (2(ak)^3 - 3(bk)^3 + 4(ck)^3)/(2a^3 - 3b^3 + 4c^3)`
`= (k^3(2a^3 - 3b^3 + 4c^2))/(2a^3 - 3b^3 + 4c^3)`
= `k^3`
RHS = `((2x - 3y + 4z)/(2a - 3b + 4c))^3`
`= ((2ak - 3bk + 4ck)/(2a - 3b + 4c))^3`
`= [(k(2a - 3b + 4c))/(2a - 3b + 4c)]^3`
`= k^3`
Hence LHS = RHS
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?