Advertisements
Advertisements
प्रश्न
If x = cos θ and y = sin3θ, show that `y(d^2y)/(dx^2) + (dy/dx)^2` = 3sin2θ(5cos2θ – 1)
बेरीज
उत्तर
x = cos θ,
y = sin3θ
Differentiating w.r.t. θ
`dx/(dθ)` = – sinθ
and `dy/(dθ)` = 3sin2θ·cosθ ....(1)
∴ `dy/dx = ((dy)/(dθ))/((dx)/(dθ))`
= `(3sin^2θcosθ)/(-sinθ)`
`dy/dx` = – 3 sin θ cos θ ....(2)
Differentiating (2) w.r.t x
`d/dx(dy/dx) = d/dx(-3sinθcosθ)`
∴ `(d^2y)/(dx^2) = d/(dθ)(-3sinθcosθ)*(dθ)/dx`
= `-3[sinθ(-sinθ) + cosθ*cosθ]*(-1/sinθ)`
= `3[(-sin^2θ + cos^2θ)/sinθ]`
∴ L.H.S. = `y(d^2y)/(dx^2) + (dy/dx)^2`
= `sin^3θ*3((cos^2θ - sin^2θ))/sinθ + (-3sinθcosθ)^2`
= 3sin2θ(cos2θ – sin2θ) + 9sin2θcos2θ
= 3sin2θ[cos2θ – sin2θ + 3cos2θ]
= 3sin2θ[4cos2θ – (1 – cos2θ)]
= 3sin2θ(5cos2θ – 1)
= R.H.S.
shaalaa.com
Higher Order Derivatives
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?