मराठी

If x = cos θ and y = sin3θ, show that yd2ydx2+(dydx)2 = 3sin2θ(5cos2θ – 1) -

Advertisements
Advertisements

प्रश्न

If x = cos θ and y = sin3θ, show that `y(d^2y)/(dx^2) + (dy/dx)^2` = 3sin2θ(5cos2θ – 1)

बेरीज

उत्तर

x = cos θ,

y = sin3θ

Differentiating w.r.t. θ

`dx/(dθ)` = – sinθ

and `dy/(dθ)` = 3sin2θ·cosθ   ....(1)

∴ `dy/dx = ((dy)/(dθ))/((dx)/(dθ))` 

= `(3sin^2θcosθ)/(-sinθ)`

`dy/dx` = – 3 sin θ cos θ   ....(2)

Differentiating (2) w.r.t x

`d/dx(dy/dx) = d/dx(-3sinθcosθ)`

∴ `(d^2y)/(dx^2) = d/(dθ)(-3sinθcosθ)*(dθ)/dx`

= `-3[sinθ(-sinθ) + cosθ*cosθ]*(-1/sinθ)`

= `3[(-sin^2θ + cos^2θ)/sinθ]`

∴ L.H.S. = `y(d^2y)/(dx^2) + (dy/dx)^2`

= `sin^3θ*3((cos^2θ - sin^2θ))/sinθ + (-3sinθcosθ)^2`

= 3sin2θ(cos2θ – sin2θ) + 9sin2θcos2θ

= 3sin2θ[cos2θ – sin2θ + 3cos2θ]

= 3sin2θ[4cos2θ – (1 – cos2θ)]

= 3sin2θ(5cos2θ – 1)

= R.H.S.

shaalaa.com
Higher Order Derivatives
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×