Advertisements
Advertisements
प्रश्न
If x = Φ(t) is a differentiable function of t, then prove that:
`int f(x)dx = int f[Φ(t)]*Φ^'(t)dt`
Hence, find `int(logx)^n/x dx`.
बेरीज
उत्तर
x = Φ(t) is differentiable function of t.
∴ `dx/dt` = Φ'(t)
Let `intf(x)dx` = F(x)
∴ `d/dx[F(x)]` = f(x)
∴ By the chain rule
`d/dt[F(x)] = d /dx[F(x)]*dx/dt`
= `f(x)*dx/dt`
= `f[Φ(t)]*Φ^'(t)`
∴ By the definition of integral F(x) = `int f[Φ(t)]*Φ^'(t)dt`
∴ `int f(x)dx = int f[Φ(t)]*Φ^'(t)dt`
To find `bb(int (log x)^n/x dx)`:
Let I = `int (logx)^n/x dx`
Put log x = t
∴ `1/x dx` = dt
∴ I = `int t^n dt = t^(n + 1)/(n + 1) + c`
= `1/(n + 1)*(logx)^(n + 1) + c`
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?