मराठी

If x, y and z are in continued proportion, Prove that: xy2.z2+yz2.x2+zx2.y2=1x3+1y3+1z3 - Mathematics

Advertisements
Advertisements

प्रश्न

If x, y and z are in continued proportion, Prove that:

`x/(y^2.z^2) + y/(z^2.x^2) + z/(x^2.y^2) = 1/x^3 + 1/y^3 + 1/z^3`

बेरीज

उत्तर

`x/y = y/z`

`\implies` y2 = xz

LHS = `x/(y^2.z^2) + y/(z^2.x^2) + z/(x^2.y^2)`

= `(x^3 + y^3 + z^3)/(x^2.y^2z^2)`

`(x^3 + y^3 + z^3)/(x^3z^3) = x^3/(x^3z^3) + y^3/(x^3z^3) + z^3/(x^3z^3)`

= `1/z^3 + y^3/y^6 + 1/x^3`

= `1/z^3 + 1/y^3 + 1/x^3`

= RHS

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2024-2025 (April) Specimen Paper
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×