Advertisements
Advertisements
प्रश्न
If x4 occurs in the tth term in the expansion of `(x^4 + 1/x^3)^15`, then the value oft is equal to:
पर्याय
7
8
9
10
MCQ
उत्तर
9
Explanation:
The binomial expansion of `(x + a)^n` gives `(t + 1)^(th)` term = `T_(t + 1) = ""^nC_t x^(n - t) a^t`
We have expansion of `(x^4 + 1/x^3)^15`
On comparing with `(x + a)^n`, we get `x = x^4, a = 1/x^3, n` = 15
∴ tth term = `T_t = ""^15C_(t - 1) (x^4)^(15 - (t - 1)) . (1/x^3)^(t - 1)`
= `""^15C_(t - 1) (x)^(60 - 4t + 4) . (x)^(- 3t + 3) = ""^15C_(t - 1) (x)^(67 - 7t)`
Since, `x^4` occurs in the tth term
∴ 67 – 7t = 4
⇒ 7t = 63, t = 9
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?