Advertisements
Advertisements
प्रश्न
If y = 2 sin x + 3 cos x, then show that y2 + y = 0.
उत्तर
Given y = 2 sin x + 3 cos x ....(1)
Differentiating with respect to 'x' we get,
y1 = 2 cos x - 3 sin x
Differentiating again with respect to 'x' we get,
y2 = 2 (- sin x) - 3 cos x
y2 = - 2 sin x - 3 cos x ....(2)
Adding (1) and (2) we get,
y + y2 = 2 sin x + 3 cos x - 2 sin x - 3 cos x
= 0
y + y2 = 0
Hence proved.
APPEARS IN
संबंधित प्रश्न
Differentiate the following with respect to x.
(ax2 + bx + c)n
Differentiate the following with respect to x.
sin(x2)
Find `"dy"/"dx"` for the following function.
x3 + y3 + 3axy = 1
If 4x + 3y = log(4x – 3y), then find `"dy"/"dx"`
Differentiate the following with respect to x.
(sin x)x
Differentiate the following with respect to x.
(sin x)tan x
Find `"dy"/"dx"` of the following function:
x = a(θ – sin θ), y = a(1 – cos θ)
Differentiate sin2x with respect to x2.
If = a cos mx + b sin mx, then show that y2 + m2y = 0.
If y = sin(log x), then show that x2y2 + xy1 + y = 0.