मराठी

If y =sin (log x), then dydxdydxyx2d2ydx2+xdydx+y is equal to ______. -

Advertisements
Advertisements

प्रश्न

If y =sin (log x), then `x^2 ("d"^2"y")/"dx"^2 + x "dy"/"dx" + "y"` is equal to ______.

पर्याय

  • 0

  • 1

  • 2

  • 3

MCQ
रिकाम्या जागा भरा

उत्तर

If y =sin (log x), then `x^2 ("d"^2"y")/"dx"^2 + x "dy"/"dx" + "y"` is equal to 0.

Explanation:

y = sin (log x)     ...(i)

`therefore "dy"/"dx" = cos (log x) * 1/x`

`=> x "dy"/"dx" = cos (log x)`

Differentiating both sides w.r.t. x, we get

`x ("d"^2"y")/"dx"^2 + "dy"/"dx" * 1 = - sin (log x) * 1/x`

`=> "x"^2 ("d"^2"y")/"dx"^2 + x "dy"/"dx"` = - y    ....[From (i)]

`=> "x"^2 ("d"^2"y")/"dx"^2 + x "dy"/"dx"`+ y = 0

shaalaa.com
Higher Order Derivatives
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×