Advertisements
Advertisements
प्रश्न
If y = y(x) is the solution of the differential equation `(1 + e^(2x))(dy)/(dx) + 2(1 + y^2)e^x` = 0 and y(0) = 0, then `6(y^'(0) + (y(log_esqrt(3))))^2` is equal to ______.
पर्याय
2
–2
–4
–1
उत्तर
If y = y(x) is the solution of the differential equation `(1 + e^(2x))(dy)/(dx) + 2(1 + y^2)e^x` = 0 and y(0) = 0, then `6(y^'(0) + (y(log_esqrt(3))))^2` is equal to –4.
Explanation:
`(1 + e^(2x))(dy)/(dx) + 2(1 + y^2)e^x` = 0 and y(0) = 0
⇒ `(dy)/(1 + y^2) = -(2e^x)/(1 + e^(2x))dx`
⇒ `int(dy)/(1 + y^2) = -2inte^x/(1 + e^(2x))dx`
⇒ tan–1(y) = –2tan–1ex + C
∵ y(0) = 0
∴ tan–1(0) = –2tan–1(1) + C
⇒ C = `2(π/4) = π/2`
⇒ tan–1y + 2tan–1ex = `π/2` ...(i)
Now, `((dy)/(dx))_(x = 0) = (-(2(1 + y^2)e^x)/(1 + e^(2x)))_(x = 0)`
⇒ `((dy)/(dx))_(x = 0)` = –1
⇒ Put x = `log_esqrt(3)` in equation (i), we get
`tan^-1y + 2tan^-1e^(log_e sqrt(3)) = π/2`
⇒ `tan^-1y + 2tan^-1sqrt(3) = π/2`
⇒ `tan^-1y + (2π)/3 = π/2`
⇒ tan–1y = `–π/6`
⇒ `y(log_e sqrt(3)) = - 1/sqrt(3)`
∴ `6[y^'(0) + y(log_esqrt(3))^2] = 6[-1 + 1/3]` = –4