मराठी

In A δAbc, the Internal Bisector of Angle a Meets the Opposite Side Bc at Point D. Through Vertex C, Line Ce is Drawn Parallel to Da Which Meets Ba Produced at Point E. Show that δAce is Isosceles. - Mathematics

Advertisements
Advertisements

प्रश्न

In a ΔABC, the internal bisector of angle A meets the opposite side BC at point D. Through vertex C, line CE is drawn parallel to DA which meets BA produced at point E. Show that ΔACE is isosceles.

बेरीज

उत्तर


DA || CE                 ... [Given]
⇒ ∠1 = ∠4            ...(i) ( Corresponding angles )
∠2 = ∠3                ....(ii) ( Alternate angles )
But ∠1 = ∠2          ....(iii) ( AD is the bisector of ∠A )

From (i), (ii) and (iii)
∠3 = ∠4
⇒ AC = AE
⇒ ΔACE is an isosceles triangle.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Isosceles Triangles - Exercise 10 (B) [पृष्ठ १३६]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
पाठ 10 Isosceles Triangles
Exercise 10 (B) | Q 24 | पृष्ठ १३६
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×