Advertisements
Advertisements
प्रश्न
In a triangle ABC with usual notations, if `(cos "A")/"a" = (cos "B")/"b" = (cos "C")/"c"`, then area of triangle ABC with a = `sqrt6` is ____________.
पर्याय
`2/sqrt3` sq units
`(3sqrt3)/2` sq units
`(5sqrt3)/2` sq units
`sqrt3/2` sq units
उत्तर
In a triangle ABC with usual notations, if `(cos "A")/"a" = (cos "B")/"b" = (cos "C")/"c"`, then area of triangle ABC with a = `sqrt6` is `underline((3sqrt3)/2)` sq units.
Explanation:
Given, `(cos "A")/"a" = (cos "B")/"b" = (cos "C")/"c"` .............(i)
`("b"^2 + "c"^2 - "a"^2)/(2 "abc") = ("a"^2 + "c"^2 - "b"^2)/(2 "abc") = ("a"^2 + "b"^2 - "c"^2)/(2 "abc")`
b2 + c2 − a2 = a2 + c2 − b2 = a2 + b2 − c2
a = b = c
∴ ΔABC is an equilateral triangle
∴ Area of ΔABC = `sqrt3/4 "a"^2`
= `sqrt3/4 (sqrt6)^2`
= `(sqrt3 xx 6)/4`
= `(3sqrt3)/2` sq units