Advertisements
Advertisements
प्रश्न
In a Young's double slit experiment, the width of the one of the slit is three times the other slit. The amplitude of the light coming from a slit is proportional to the slit- width. Find the ratio of the maximum to the minimum intensity in the interference pattern.
पर्याय
4 : 1
2 : 1
3 : 1
1 : 4
उत्तर
4 : 1
Explanation:
Given,
Let the width of the slit be ω
So, ω1 = 3ω2
Since, A ∝ ω
Ratio of maximum to minimum intensity
`I_"max"/I_"min"` = ?
I = `"A"_1^2 + "A"_2^2 + 2"A"_1 +"A"_2` cos Φ
For maximum intensity cos Φ = 1
For minimum intensity cos Φ = - 1
So, Imax = (A1 + A2)2
Imin = (A1 - A2)2
Since, A1 = A and A2 = 3A
So, `"A"_1/"A"_2 = omega_1/omega_2`
Hence, `"I"_"max"/"I"_"min" = (("A"+3"A")^2)/(("A"-3"A")^2)`
⇒ `"I"_"max"/"I"_"min" = (4"A")^2/(-2"A")^2`
⇒ `"I"_"max"/"I"_"min" = 16/4 = 4/1`
Hence `"I"_"max"/"I"_"min" = 4/1`