Advertisements
Advertisements
प्रश्न
In an examination 50% of the students passed in Mathematics and 70% of students passed in Science while 10% students failed in both subjects. 300 students passed in both the subjects. Find the total number of students who appeared in the examination, if they took examination in only two subjects
उत्तर
Let M and S represent the student failed in Mathematics and Science.
Given: Number of students passed in Mathematics is 50%
∴ Number of students failed in Mathematics
= 100 – 50%
= 50%
n(M) = 50%
Number of students passed in Science is 70%
∴ Number of students failed in Science
= 100 – 70%
= 30%
n(S) = 30%
Number of students failed in both the subjects is 10%
n(M ∩ S) = 10%
n(M ∪ S) = n(M) + n(S) – n(M ∩ S)
= 50 + 30 – 10
= 80 – 10
= 70
Given: 70% of the students failed in atleast any one of the subject
∴ 30% of the students passed in atleast any one of the subjects.
30 students passed mean, the total number of students is 100.
∴ 300 students passed means, the total number of students = `(100 xx 300)/30`
Total number of students appeared in the examination = 1000
APPEARS IN
संबंधित प्रश्न
State, whether the pair of sets, given below, are equal sets or equivalent sets:
{2, 4, 6, 8, 10} and {a, b, d, e, m}
Write the cardinal number of the following set:
D= {3, 2, 2, 1, 3, 1, 2}
Write the cardinal number of the following set:
E = {16, 17, 18 19}
Given:
A = {Natural numbers less than 10}
B = {Letters of the word ‘PUPPET’}
C = {Squares of first four whole numbers}
D = {Odd numbers divisible by 2}.
Find: n(C ∩ D)
Given:
A = {Natural numbers less than 10}
B = {Letters of the word ‘PUPPET’}
C = {Squares of first four whole numbers}
D = {Odd numbers divisible by 2}.
Find: n(B ∪ C)
Verify n(A ∪ B ∪ C) = n(A) + n(B) + n(C) – n(A ∩ B) – n(B ∩ C) – n(A ∩ C) + n(A ∩ B ∩ C) for the following sets
A = {1, 3, 5}, B = {2, 3, 5, 6}, C = {1, 5, 6, 7}
In a party of 45 people, each one likes tea or coffee or both. 35 people like tea and 20 people like coffee. Find the number of people who like both tea and coffee
In a colony, 275 families buy Tamil newspaper, 150 families buy English newspaper, 45 families buy Hindi newspaper, 125 families buy Tamil and English newspaper, 17 families buy English and Hindi newspapers, 5 families buy Tamil and Hindi newspaper and 3 families buy all the three newspaper. If each family buy atleast one of these newspaper then find Number of families buy only one newspaper
Each student in a class of 35 plays atleast one game among chess, carrom and table tennis. 22 play chess, 21 play carrom, 15 play table tennis, 10 play chess and table tennis, 8 play carrom and table tennis and 6 play all the three games. Find the number of students who play only carrom (Hint: Use Venn diagram)
In a class of 50 students, each one come to school by bus or by bicycle or on foot. 25 by bus, 20 by bicycle, 30 on foot and 10 students by all the three. Now how many students come to school exactly by two modes of transport?