मराठी

In figure, ABCD is a trapezium with AB || DC. If ∆AED is similar to ∆BEC, prove that AD = BC. -

Advertisements
Advertisements

प्रश्न

In figure, ABCD is a trapezium with AB || DC. If ∆AED is similar to ∆BEC, prove that AD = BC.

बेरीज

उत्तर

It is given that ∆AED ~ ∆BEC

`"AE"/"BE"="ED"/"EC"="AD"/"BC" ….(i)` {Corresponding sides are Proportional}

In ∆ABE and ∆CDE,

∠AEB = ∠CED [Vertically opposite angles] 

∠EAB = ∠ECD [Alternate angles]

∴ ∆ABE ~ ∆CDE  [AA Similarity]

`=> "AB"/"CD" = "EB"/"ED"="AE"/"EC"`   {Corresponding sides are Proportional}

`"EC"/"ED" = "AE"/"EB" ….(ii)`

From (i) and (ii), we get

`"AD"/"BC"="ED"/"EC"`

`=> "AD"/"BC"=1`  (ED = EC)
∴ AD = BC  Proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×