Advertisements
Advertisements
प्रश्न
Integrate the following functions with respect to x:
`sqrt(81 + (2x + 1)^2`
उत्तर
`int sqrt(81 + (2x + 1)^2) "d"x = int sqrt(9^2 + (2x + 1)^2) "d"x`
Put 2x + 1 = t
2 dx = dt
= `int sqrt(9^2 + "t"^2) * 1/2 "dt"`
= `1/2 int sqrt(9^2 + "t"^2) "dt"`
= `1/2 ["t"/2 sqrt("t"^2 + 9^2) + 9^2/2 log |"t" + sqrt("t" + 9^2)|] + "c"`
= `- 1/4 [(2x + 1) sqrt((2x + 1)^2 + 9^2) + 81 log |(2x + 1) + sqrt((2x + 1)^2 + 9^2)|] + "c"`
`int sqrt(81 + (2x + 1)^2) "d"x = 1/4[(2x + 1) sqrt((2x + 1)^2 + 81) + 81 log |(2x + 1) + sqrt((2x + 1)^2 + 81)|] + "c"`
APPEARS IN
संबंधित प्रश्न
Evaluate:`int(tansqrtx)/sqrtxdx`
Integrate the following functions with respect to x :
`(x^3 + 4x^2 - 3x + 2)/x^2`
Integrate the following functions with respect to x :
`[sqrt(x) + 1/sqrt(x)]^2`
Integrate the following functions with respect to x :
`(cos2x - cos 2 alpha)/(cosx - cos alpha)`
Integrate the following functions with respect to x :
`(x + 1)/((x + 2)(x + 3))`
Integrate the following with respect to x :
sin5x cos3x
Integrate the following with respect to x:
`"e"^(- 3x) sin 2x`
Integrate the following with respect to x:\
`logx/(1 + log)^2`
Find the integrals of the following:
`1/(25 - 4x^2)`
Find the integrals of the following:
`1/sqrt(xx^2 + 4x + 2)`
Integrate the following with respect to x:
`(3x + 1)/(2x^2 - 2x + 3)`
Integrate the following with respect to x:
`(2x + 3)/sqrt(x^2 + 4x + 1)`
Integrate the following functions with respect to x:
`sqrt(9 - (2x + 5)^2`
Choose the correct alternative:
If `int 3^(1/x)/x^2 "d"x = "k"(3^(1/x)) + "c"`, then the value of k is
Choose the correct alternative:
`int ("e"^x (1 + x))/(cos^2(x"e"^x)) "d"x` is
Choose the correct alternative:
`int (x^2 + cos^2x)/(x^2 + 1) "cosec"^2 x/("d"x)` is
Choose the correct alternative:
`int (x + 2)/sqrt(x^2 - 1) "d"x` is
Choose the correct alternative:
`int 1/(x sqrt(log x)^2 - 5) "d"x` is
Choose the correct alternative:
`int "e"^(sqrt(x)) "d"x` is