Advertisements
Advertisements
प्रश्न
Integrate the following functions with respect to x:
`sqrt(x^2 + 2x + 10)`
उत्तर
`int sqrt(x^2 + 2x + 10) "d"x = int sqrt((x + 1)^2 + 1^2 + 10) "d"x`
= `int sqrt((x + 1)^2 + 9) "d"x`
= `int sqrt((x + 1)^2 + 3^2) "d"x`
Put x + 1 = t
dx = dt
= `int sqrt("t"^2 + 3^2) "dt"`
= `"t"/2 sqrt("t" + 3^2) + 3^2/2 log |"t" + sqrt("t"^2 + 3^2)| + "c"`
= `"t"/2 sqrt("t"^2 + 3^2) + 3^2/2 log |"t" + sqrt("t"^2 + 3^2)| + "c"`
= `((x + 1))/2 sqrt((x + 1)^2 + 3^2) + 3^2/2 log |x + 1 sqrt((x + 1)^2 + 9)| + "c"`
= `((x + 1))/2 sqrt(x^2 + 2x 1 + 9) + 9/2 log |x + 1 + sqrt(x^2 + 2x + 1 + 9)| + "c"`
= `((x + 1))/2 sqrt(x^2 + 2x + 10) + 9/2 log |x + 1 + sqrt(x^2 + 2x + 10)| + "c"`
APPEARS IN
संबंधित प्रश्न
Integrate the following functions with respect to x :
`(cos2x - cos 2 alpha)/(cosx - cos alpha)`
Integrate the following with respect to x :
`("e"^x - "e"^-x)/("e"^x + "e"^-x)`
Integrate the following with respect to x :
`(10x^9 + 10^x log_"e" 10)/(10^x + x^10)`
Integrate the following with respect to x:
`(x sin^-1 x)/sqrt(1 - x^2)`
Integrate the following with respect to x:
x5ex2
Integrate the following with respect to x:
`"e"^("a"x) cos"b"x`
Integrate the following with respect to x:
`"e"^x ((2 + sin 2x)/(1 + cos 2x))`
Find the integrals of the following:
`1/sqrt(xx^2 + 4x + 2)`
Find the integrals of the following:
`1/sqrt((2 + x)^2 - 1)`
Integrate the following with respect to x:
`(5x - 2)/(2 + 2x + x^2)`
Choose the correct alternative:
`int ("e"^x (1 + x))/(cos^2(x"e"^x)) "d"x` is
Choose the correct alternative:
`int 2^(3x + 5) "d"x` is
Choose the correct alternative:
`int ("e"^x(x^2 tan^-1x + tan^-1x + 1))/(x^2 + 1) "d"x` is
Choose the correct alternative:
`int (x^2 + cos^2x)/(x^2 + 1) "cosec"^2 x/("d"x)` is
Choose the correct alternative:
`int x^2 cos x "d"x` is
Choose the correct alternative:
`int "e"^(sqrt(x)) "d"x` is