Advertisements
Advertisements
प्रश्न
Integrate the following with respect to x:
x log x
उत्तर
`int x log x "d"x`
u = x
u' = 1
u" = 0
dv = `log x "d"x`
⇒ v = `int log x "d"x`
u = `log x`
dv = dx
du = `1/x "d"x`
v = x
v = `x log x - int x xx 1/x "d"x`
v = `x log x - int "d"x`
⇒ v = `x log x - x`
v1 = `int "v" "d"x`
= `int (x log x - x) "d"x`
= `int x log x "d"x int x "d"x` .........(1)
u = x
dv = `log x "d"x`
d = dx
v = `int log x "d"x`
= `(x log x - x)`
`int log x "d"x = x(x log x - x) - int (x log x - x) "d"x`
`int log x "d"x = x^2 log x - x^2 - int x log x "d"x + int x "d"x`
`int x log x "d"x + int x log x "d"x = x^2 log x - xx^2 + x^2/2 2int x log x "d"x`
= `x^2 log x - x^2/2`
`int x log x "d"x = x^2/2 log x = x^2/4`
(1) ⇒ v1 = `x^2/2 log x - x^2/4 - int x "d"x`
= `x^2/2 log x - x^2/4 - x^2/2`
v1 = `x^2/2 log x - 3/4 x^2`
v2 = `int "v"_1 "d"x`
= `int (x^2/2 log x - 3/4 x^2) "d"x`
`int "u" "dv"` = uv – u'v1 + u"v2 – u"'v3 + ..........
`int x log x "d"x = x(x log x - x) - 1 (x^2/2 log x - 3/4 x^2) + 0 xx int "v"_1 "d"x`
`int x log x "d"x = x(x log x - x) = x^2/2 log x + 3/4 x^2 + "c"`
= `x^2 log x - x^2 - x^2/2 log x + 3/4 x^2 + "c"`
= `(x^2 - x^2/2) log x + 3/4 x^2 - x^2 + "c"`
= `9(2x^2 - x^2)/2) log x + (3/4 - 1) x^2 + "c"`
`(x^2/2) log x - 1/4 x^2 + "c"`
APPEARS IN
संबंधित प्रश्न
Evaluate : `∫_0^(pi/2) (sinx.cosx)/(1 + sin^4x)`.dx
Find the volume of the solid generated by the complete revolution of the ellipse `"x"^2/36 + "y"^2/25 = 1` about Y-axis.
Evaluate : `int _0^1 ("x" . ("sin"^-1 "x")^2)/sqrt (1 - "x"^2)` dx
Integrate the following functions with respect to x :
`(x^3 + 4x^2 - 3x + 2)/x^2`
Integrate the following functions with respect to x :
(2x – 5)(3x + 4x)
Integrate the following functions with respect to x :
`(sin^2x)/(1 + cosx)`
Integrate the following functions with respect to x :
cos 3x cos 2x
Integrate the following functions with respect to x :
`"e"^(x log "a") "e"^x`
Integrate the following with respect to x :
`sqrt(x)/(1 + sqrt(x))`
Integrate the following with respect to x:
x3 sin x
Integrate the following with respect to x:
`(x sin^-1 x)/sqrt(1 - x^2)`
Integrate the following with respect to x:
`"e"^("a"x) cos"b"x`
Integrate the following with respect to x:
`"e"^(-x) cos 2x`
Integrate the following with respect to x:
`"e"^x ((x - 1)/(2x^2))`
Find the integrals of the following:
`1/sqrt(xx^2 + 4x + 2)`
Find the integrals of the following:
`1/sqrt(x^2 - 4x + 5)`
Choose the correct alternative:
The gradient (slope) of a curve at any point (x, y) is `(x^2 - 4)/x^2`. If the curve passes through the point (2, 7), then the equation of the curve is
Choose the correct alternative:
`int (x + 2)/sqrt(x^2 - 1) "d"x` is