Advertisements
Advertisements
प्रश्न
खालील वर्गसमीकरणाची मुळे लिहा.
(p – 5) (p + 3) = 0
उत्तर
(p – 5) (p + 3) = 0
∴ p – 5 = 0 किंवा p + 3 = 0
∴ p = 5 किंवा p = -3
∴ 5 आणि -3 ही दिलेल्या वर्गसमीकरणाची मुळे आहेत.
APPEARS IN
संबंधित प्रश्न
वर्गसमीकरणासमोर दिलेल्या चलाच्या किमती त्या समीकरणांची मुळे आहेत की नाही ते ठरवा.
2m2 - 5m = 0, m = 2, `5/2`
जर x = 3 हे kx2 - 10x + 3 = 0 या समीकरणाचे एक मूळ असेल, तर k ची किंमत किती?
खालील प्रश्नाच्या उत्तरांचे अचूक पर्याय निवडा.
X2 – kX + 27 = 0 या वर्गसमीकरणाचे एक मूळ 3 असेल, तर k ची किंमत खालीलपैकी कोणती?
जर b2 - 4ac > 0 व b2 - 4ac < 0 असेल, तर या प्रत्येक बाबतीत वर्गसमीकरणाच्या मुळाचे स्वरूप लिहा.
x2 + kx + 54 = 0 या वर्गसमीकरणाचे एक मूळ – 6 असेल, तर k ची किंमत काढण्यासाठी खालील कृती पूर्ण करा.
कृती: x2 + kx + 54 = 0 या वर्गसमीकरणाची एक उकल –6 आहे.
म्हणून, x = ______ घेऊ.
(–6)2 + k(–6) + 54 = 0
(______) –6k + 54 = 0
–6k + ______ = 0
k = ______
x2 + 4x – 5 = 0 या वर्गसमीकरणाचे 1 हे मूळ आहे किंवा नाही ते ठरवण्यासाठी खालील कृती पूर्ण करा.
कृती: x = (______) असताना
डा. बा.
= 12 + 4 (______) – 5
= 1 + 4 – 5
= (______) – 5
= ______
= उ. बा.
म्हणून, x = 1 हे दिलेल्या समीकरणाचे मूळ आहे.
एका वर्गसमीकरणाची मुळे 4 व – 5 आहेत, तर ते वर्गसमीकरण तयार करा.
एका वर्गसमीकरणाची मुळे 5 व –4 आहेत, तर ते वर्गसमीकरण तयार करा.
2m2 - 5m = 0 या वर्गसमीकरणाचे मूळ 2 आहे किंवा नाही ते ठरवा.
kx2 - 10x + 3 = 0 या वर्गसमीकरणाचे एक मूळ 3 असेल, तर k ची किंमत काढण्यासाठी खालील कृती पूर्ण करा.
कृती:
kx2 - 10x + 3 = 0 या वर्गसमीकरणाचे एक मूळ 3 आहे.
∴ x = `square` वरील समीकरणात ठेवू.
∴ k`(square)^2 - 10 xx square + 3 = 0`
∴ `square` - 30 + 3 = 0
∴ 9k = `square`
∴ k = `square`