मराठी
महाराष्ट्र राज्य शिक्षण मंडळएस.एस.सी (मराठी माध्यम) इयत्ता १० वी

खालील वर्गसमीकरणाची मुळे लिहा. (p – 5) (p + 3) = 0 - Mathematics 1 - Algebra [गणित १ - बीजगणित]

Advertisements
Advertisements

प्रश्न

खालील वर्गसमीकरणाची मुळे लिहा.

(p – 5) (p + 3) = 0

बेरीज

उत्तर

(p – 5) (p + 3) = 0

∴ p – 5 = 0 किंवा p + 3 = 0

∴ p = 5 किंवा p = -3

∴ 5 आणि -3 ही दिलेल्या वर्गसमीकरणाची मुळे आहेत.

shaalaa.com
वर्गसमीकरणाची मुळे (उकली)
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: वर्गसमीकरणे - Q १ ब)

APPEARS IN

संबंधित प्रश्‍न

वर्गसमीकरणासमोर दिलेल्या चलाच्या किमती त्या समीकरणांची मुळे आहेत की नाही ते ठरवा.

2m2 - 5m = 0, m = 2, `5/2`


जर x = 3 हे kx2 - 10x + 3 = 0 या समीकरणाचे एक मूळ असेल, तर k ची किंमत किती?


खालील प्रश्नाच्या उत्तरांचे अचूक पर्याय निवडा.

X2 – kX + 27 = 0 या वर्गसमीकरणाचे एक मूळ 3 असेल, तर k ची किंमत खालीलपैकी कोणती? 


जर b2 - 4ac > 0 व b2 - 4ac < 0 असेल, तर या प्रत्येक बाबतीत वर्गसमीकरणाच्या मुळाचे स्वरूप लिहा.


x2 + kx + 54 = 0 या वर्गसमीकरणाचे एक मूळ – 6 असेल, तर k ची किंमत काढण्यासाठी खालील कृती पूर्ण करा.

कृती: x2 + kx + 54 = 0 या वर्गसमीकरणाची एक उकल –6 आहे.

म्हणून, x = ______ घेऊ.

(–6)2 + k(–6) + 54 = 0

(______) –6k + 54 = 0

–6k + ______ = 0

k = ______ 


x2 + 4x – 5 = 0 या वर्गसमीकरणाचे 1 हे मूळ आहे किंवा नाही ते ठरवण्यासाठी खालील कृती पूर्ण करा.

कृती: x = (______) असताना 

डा. बा.

= 12 + 4 (______) – 5 

= 1 + 4 – 5

= (______) – 5

= ______

= उ. बा.

म्हणून, x = 1 हे दिलेल्या समीकरणाचे मूळ आहे.


एका वर्गसमीकरणाची मुळे 4 व – 5 आहेत, तर ते वर्गसमीकरण तयार करा.


एका वर्गसमीकरणाची मुळे 5 व –4 आहेत, तर ते वर्गसमीकरण तयार करा.


2m2 - 5m = 0 या वर्गसमीकरणाचे मूळ 2 आहे किंवा नाही ते ठरवा.


kx2 - 10x + 3 = 0 या वर्गसमीकरणाचे एक मूळ 3 असेल, तर k ची किंमत काढण्यासाठी खालील कृती पूर्ण करा.

कृती:

kx2 - 10x + 3 = 0 या वर्गसमीकरणाचे एक मूळ 3 आहे.

 ∴ x = `square` वरील समीकरणात ठेवू.

∴ k`(square)^2 - 10 xx square + 3 = 0`

∴ `square` - 30 + 3 = 0

∴ 9k = `square`

∴ k = `square`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×