मराठी

Let A = {1, 2, 3, ..., 10} and f : A → A be defined as f(k) = is oddis even{k+1ifk is odd kifk is even. Then the number of possible functions g : A → A such that gof = f is ______. -

Advertisements
Advertisements

प्रश्न

Let A = {1, 2, 3, ..., 10} and f : A `rightarrow` A be defined as

f(k) = `{{:(k + 1, if k  "is odd"),(     k, if k  "is even"):}`.

Then the number of possible functions g : A `rightarrow` A such that gof = f is ______.

पर्याय

  • 55

  • 105

  • 5!

  • 10C5

MCQ
रिकाम्या जागा भरा

उत्तर

Let A = {1, 2, 3, ..., 10} and f : A `rightarrow` A be defined as

f(k) = `{{:(k + 1, if k  "is odd"),(     k, if k  "is even"):}`.

Then the number of possible functions g : A `rightarrow` A such that gof = f is `underlinebb(10^5)`.

Explanation:

Putting value of K from 1 to 10, we get

f(1) = f(2) = 2

f(3) = f(4) = 4

f(5) = f(6) = 6

f(7) = f(8) = 8

f(9) = f(10) = 10

Since, g(f(x)) = f(x)

∴ gof(1) = f(1) `\implies` g(2) = f(1) = 2

gof(2) = f(2) `\implies` g(2) = f(2) = 2

gof(3) = f(3) `\implies` g(4) = f(3) = 4

∴ The image of 2, 4, 6, 8, 10 in function g(x) should be 2, 4, 6, 8, 10 respectively. Therefore, image of each of remaining elements can be any of 10 elements.

Hence, number of possible g(x) is 105.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×