Advertisements
Advertisements
प्रश्न
Let A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` and a = 4, b = –2. Show that: (A – B)T = AT – BT
उत्तर
We have,
A = `[(1, 2),(-1, 3)]`
B = `[(4, 0),(1, 5)]`
C = `[(2, 0),(1, -2)]`
And a = 4, b = –2
(A – B)T = `[(1 - 4, 2 - 0),(-1 - 1, 3 - 5)]^"T"`
= `[(-3, 2),(-2, -2)]^"T"`
= `[(-3, -2),(2, -2)]`
Now AT – BT = `[(1, -1),(2, 3)] - [(4, 1),(0, 5)]`
= `[(-3, -2),(2, -2)]`
= (A – B)T
Hence proved.
APPEARS IN
संबंधित प्रश्न
Find the transpose of the following matrices:
`[(5),(1/2),(-1)]`
Find the transpose of the following matrices:
`[(1,-1),(2,3)]`
Find the transpose of the following matrices:
`[(-1,5,6),(sqrt3, 5, 6),(2,3,-1)]`
Let A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` and a = 4, b = –2. Show that: (AT)T = A
Let A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` and a = 4, b = –2. Show that: (bA)T = bAT
Let A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` and a = 4, b = –2. Show that: (AB)T = BTAT
If A `= ["a"_("ij")]_(4 xx 3)` where `"a"_("ij") - ("i - j")/("i + j"),` then find A.