मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Let a¯ and b¯ be non-collinear vectors. If vector r¯ is coplanar with a¯ and b¯, then show that there exist unique scalars t1​ and t2​ such that r¯=t1a¯+t2b¯. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Let `bara` and `barb` be non-collinear vectors. If vector `barr` is coplanar with `bara` and `barb`, then show that there exist unique scalars t1​ and t2​ such that `barr = t_1 bara + t_2 barb`. For `barr = 2hati + 7hatj + 9hatk, bara = hati + 2hatj, barb = hatj + 3hatk`, find t1, t2.

बेरीज

उत्तर

We are given three vectors:

`barr = 2hati + 7hatj + 9hatk`

`bara = hati + 2hatj`

`barb = hatj + 3hatk`

We need to express `barr` as a linear combination of `bara` and `barb`, i.e. `barr` = t1a + t2b

Expanding the right-hand side,

`t_1(hati + 2hatj) + t_2(hatj + 3hatk)`

Distribute t1 and t2

`t_1hati + 2t_1hatj + t_2hatj + 3t_2hatk`

Grouping similar terms:

`t_1hati + (2t_1 + t_2) hatj + 3t_2hatk`

Now, comparing coefficients with `barr = 2hati + 7hatj + 9hatk`, we get the equations:

t1 = 2 (from the `hati`-component)   ...(1)

2t1 + t2 = 7 (from the `hatj`-component)   ...(2)

3t2 = 9 (from the `hatk`-component)   ...(3)

From equation (1): t1 = 2

From equation (3): t1 = `9/3` = 3

Substituting t1 = 2 into equation (2):

2(2) + t2 = 7

4 + t2 = 7

t2 = 7 − 4

t2 = 3

Thus, the values of the scalars are t1 = 2 and t2 = 3.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2024-2025 (March) Official
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×