मराठी

Let a→=i^-2j^+3k^,b→=i^+j^+k^ and c→ be a vector such that a→+(b→×c→)=0→ and b→.c→ = 5. Then, the value of 3(c→.a→) is equal to ______. -

Advertisements
Advertisements

प्रश्न

Let `veca = hati - 2hatj + 3hatk, vecb = hati + hatj + hatk` and `vecc` be a vector such that `veca + (vecb xx vecc) = vec0` and `vecb.vecc` = 5. Then, the value of `3(vecc.veca)` is equal to ______.

पर्याय

  • 0

  • 1

  • 2

  • 3

MCQ
रिकाम्या जागा भरा

उत्तर

Let `veca = hati - 2hatj + 3hatk, vecb = hati + hatj + hatk` and `vecc` be a vector such that `veca + (vecb xx vecc) = vec0` and `vecb.vecc` = 5. Then, the value of `3(vecc.veca)` is equal to 0.

Explanation:

`veca = hati - 2hatj + 3hatk`

`vecb = hati + hatj + hatk`

Now, `veca.vecb` = 1 – 2 + 3 = 2 ...(i)

Also, given `veca + (vecb xx vecc)` = 0

⇒ `veca = -(vecb xx vecc)`

⇒ `veca.vecb = -(vecb xx vecc).vecb` ...(ii)

Equation (i) and equation (ii) are contradicting.

shaalaa.com
Scalar Product and Vector Product
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×