Advertisements
Advertisements
प्रश्न
Let A = `[(i, -i),(-i, i)], i = sqrt(-1)`. Then, the system of linear equations `A^8[(x),(y)] = [(8),(64)]` has ______.
पर्याय
No solution
Exactly two solutions
A unique solution
Infinitely many solutions
उत्तर
Let A = `[(i, -i),(-i, i)], i = sqrt(-1)`. Then, the system of linear equations `A^8[(x),(y)] = [(8),(64)]` has no solution.
Explanation:
Given A = `[(i, -i),(-i, i)], i = sqrt(-1)` ...(i)
We have to find the solution of the system of linear equations
`A^8[(x),(y)] = [(8),(64)]` ...(ii)
Now using equation (i)
A2 = `[(i, -i),(-i, i)][(i, -i),(-i, i)]`
⇒ A2 = `[(i^2 + i^2, -i^2 - i^2),(-i^2 - i^2, i^2 + i^2)]` ...(∵ i2 = –1)
⇒ A2 = `[(-2, 2),(2, -2)]`
⇒ A2 = `2[(-1, 1),(1, -1)]`
⇒ A4 = `4[(-1, 1),(1, -1)][(-1, 1),(1, -1)]`
⇒ A4 = `4[(2, -2),(-2, 2)]`
⇒ A4 = `8[(1, -1),(-1, 1)]`
⇒ A8 = `64[(1, -1),(-1, 1)][(1, -1),(-1, 1)]`
⇒ A8 = `64[(2, -2),(-2, 2)]`
⇒ A8 = `128[(1, -1),(-1, 1)]` ...(iii)
Now using the equation (ii) and (iii)
`128[(1, -1),(-1, 1)][(x),(y)] = [(8),(64)]`
⇒ `128[(x - y),(-x + y)] = [(8),(64)]`
⇒ `[(x - y),(-x + y)] = 1/128[(8),(64)]`
x – y = `1/16` ...(iv)
–x + y = `1/2` ...(v)
From equation (iv) and (v)
System of equation has no solution.