मराठी

Let A = [i-i-ii],i=-1. Then, the system of linear equations A8[xy]=[864] has ______. -

Advertisements
Advertisements

प्रश्न

Let A = `[(i, -i),(-i, i)], i = sqrt(-1)`. Then, the system of linear equations `A^8[(x),(y)] = [(8),(64)]` has ______.

पर्याय

  • No solution

  • Exactly two solutions

  • A unique solution

  • Infinitely many solutions

MCQ
रिकाम्या जागा भरा

उत्तर

Let A = `[(i, -i),(-i, i)], i = sqrt(-1)`. Then, the system of linear equations `A^8[(x),(y)] = [(8),(64)]` has no solution.

Explanation:

Given A = `[(i, -i),(-i, i)], i = sqrt(-1)`  ...(i)

We have to find the solution of the system of linear equations

`A^8[(x),(y)] = [(8),(64)]`  ...(ii)

Now using equation (i)

A2 = `[(i, -i),(-i, i)][(i, -i),(-i, i)]`

⇒ A2 = `[(i^2 + i^2, -i^2 - i^2),(-i^2 - i^2, i^2 + i^2)]`  ...(∵ i2 = –1)

⇒ A2 = `[(-2, 2),(2, -2)]`

⇒ A2 = `2[(-1, 1),(1, -1)]`

⇒ A4 = `4[(-1, 1),(1, -1)][(-1, 1),(1, -1)]`

⇒ A4 = `4[(2, -2),(-2, 2)]`

⇒ A4 = `8[(1, -1),(-1, 1)]`

⇒ A8 = `64[(1, -1),(-1, 1)][(1, -1),(-1, 1)]`

⇒ A8 = `64[(2, -2),(-2, 2)]`

⇒ A8 = `128[(1, -1),(-1, 1)]`  ...(iii)

Now using the equation (ii) and (iii)

`128[(1, -1),(-1, 1)][(x),(y)] = [(8),(64)]`

⇒ `128[(x - y),(-x + y)] = [(8),(64)]`

⇒ `[(x - y),(-x + y)] = 1/128[(8),(64)]`

x – y = `1/16`  ...(iv)

–x + y = `1/2`  ...(v)

From equation (iv) and (v)

System of equation has no solution.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×