मराठी

Let arg (z) represent the principal argument of the complex number z. Then, |z| = 3 and arg (z – 1) – arg (z + 1) = ππ4intersect ______. -

Advertisements
Advertisements

प्रश्न

Let arg (z) represent the principal argument of the complex number z. Then, |z| = 3 and arg (z – 1) – arg (z + 1) = `π/4`intersect ______.

पर्याय

  • Exactly at one point.

  • Exactly at two points.

  • Nowhere

  • At infinitely many points.

MCQ

उत्तर

Let arg (z) represent the principal argument of the complex number z. Then, |z| = 3 and arg (z – 1) – arg (z + 1) = `π/4`intersect nowhere.

Explanation:

Given: |z| = 3

⇒ It represents a circle of radius 3 and centre at (0, 0)

And arg (z – 1) – arg (z + 1) = `π/4`

⇒ agr`((z - 1)/(z + 1)) = π/4`

⇒ z is on major are of circle having PQ as chord and R(0, a) as centre of the circle.


So, ∠PAQ = ∠ORP = `π/4`

⇒ OP = OR = a = 1

∴ Coordinates of R is (0,1)

So, radius = RP = `sqrt(2)`

∴ OB = OR + `sqrt(2) = 1 + sqrt(2)`

⇒ B = `(0, 1 + sqrt(2))`


So, it is clear from the figure, both curves do not intersect.

∴ No z satisfy both equation.

shaalaa.com
Properties of Conjugate, Modulus and Argument (or Amplitude) of Complex Numbers
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×