Advertisements
Advertisements
प्रश्न
Let f(x) = tan-1x. Then f'(x) + f"(x) is equal to 0, when x is equal to ______
पर्याय
0
1
i
-i
MCQ
रिकाम्या जागा भरा
उत्तर
Let f(x) = tan-1x. Then f'(x) + f"(x) is equal to 0, when x is equal to 1.
Explanation:
f(x) = tan-1x
∴ f'(x) = `1/(1 + x^2)`
∴ f''(x) = `(-1)/(1 + x^2)^2 . 2x`
Since f'(x) + f"(x) = 0
∴ `1/(1 + x^2) - (2x)/(1 + x^2)^2 = 0`
⇒ 1 + x2 - 2x = 0
⇒ x = 1
shaalaa.com
Higher Order Derivatives
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?