मराठी

Let f(x) = tan-1x. Then f'(x) + f"(x) is equal to 0, when x is equal to ______ -

Advertisements
Advertisements

प्रश्न

Let f(x) = tan-1x. Then f'(x) + f"(x) is equal to 0, when x is equal to ______ 

पर्याय

  • 0

  • 1

  • i

  • -i

MCQ
रिकाम्या जागा भरा

उत्तर

Let f(x) = tan-1x. Then f'(x) + f"(x) is equal to 0, when x is equal to 1.

Explanation:

f(x) = tan-1x

∴ f'(x) = `1/(1 + x^2)`

∴ f''(x) = `(-1)/(1 + x^2)^2 . 2x`

Since f'(x) + f"(x) = 0

∴ `1/(1 + x^2) - (2x)/(1 + x^2)^2 = 0`

⇒ 1 + x2 - 2x = 0

⇒ x = 1

shaalaa.com
Higher Order Derivatives
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×