Advertisements
Advertisements
प्रश्न
Let g : (0, ∞) `rightarrow` R be a differentiable function such that `int((x(cosx - sinx))/(e^x + 1) + (g(x)(e^x + 1 - xe^x))/(e^x + 1)^2)dx = (xg(x))/(e^x + 1) + c`, for all x > 0, where c is an arbitrary constant. Then ______.
पर्याय
g is decreasing in `(0, π/4)`
g’ is increasing in `(0, π/4)`
g + g’ is increasing in `(0, π/2)`
g – g’ is increasing in `(0, π/2)`
उत्तर
Let g : (0, ∞) `rightarrow` R be a differentiable function such that `int((x(cosx - sinx))/(e^x + 1) + (g(x)(e^x + 1 - xe^x))/(e^x + 1)^2)dx = (xg(x))/(e^x + 1) + c`, for all x > 0, where c is an arbitrary constant. Then `underlinebb(g - g^’ "is increasing in" (0, π/2)`.
Explanation:
Given integral is
`int((x(cosx - sinx))/(e^x + 1) + (g(x)(e^x + 1 - xe^x))/(e^x + 1)^2)dx = (xg(x))/(e^x + 1) + c`
On differentiating both sides w.r.t. x, we get
`((x(cosx - sinx))/(e^x + 1) + (g(x)(e^x + 1 - xe^x))/(e^x + 1)^2)`
= `((e^x + 1)(g(x) + xg^'(x)) - e^x.x.g(x))/(e^x + 1)^2`
(ex + 1) x (cos x – sin x) + g(x) (ex + 1 – xex)
= (ex + 1) (g(x) + xg'(x)) – ex. x g(x)
`\implies` g'(x) = cos x – sin x ...(i)
Take integral both sides,
`\implies` g(x) = sin x + cos x + C
Take g(x) = 0; then x = `overlinex/4`
So, g(x) is increasing in `(0, π/4)`
Again, differentiate w.r.t. x in equation (i),
g''(x) = – sin x – cos x < 0
`\implies` g'(x) is decreasing function
Let r (x) = g(x) + g'(x) = 2 cos x + C
`\implies` r'(x) = g'(x) + g''(x) = –2 sin x < 0
`\implies` r is decreasing
Let l(x) = g(x) – g'(x) = 2 sin x + C
Differentiate w.r.t. x
`\implies` l'(x) = g'(x) – g''(x) = 2 cos x > 0
Take l"(x) = 0; cos x = 0; x = `π/2`
`\implies` l is increasing
Therefore, l(x) is increasing at `(0, π/2)`