Advertisements
Advertisements
प्रश्न
Let `"M" xx [(1, 1),(0, 2)]` = [1 2] where M is a matrix.
- State the order of matrix M
- Find the matrix M
उत्तर
Given
(i) `"M" xx [(1, 1),(0, 2)]` = [1 2]
M is the order of 1 x 2
(ii) let M = [x y]
∴ `[(x , y)] xx [(1, 1),(0, 2)] = [(1 , 2)]`
⇒ `[(x + 0 , x + 2y)] = [(1 , 2)]`
Comparing the corresponding elements
x = 1 and x + 2y = 2
⇒ 1 + 2y = 2
⇒ 2y = 2 - 1 = 1
⇒ y = `(1)/(2)`
Hence x = 1, y = `(1)/(2)`
∴ M = `[(1, 1/2)]`.
APPEARS IN
संबंधित प्रश्न
Wherever possible, write the following as a single matrix.
`[(0, 1, 2),(4, 6, 7)] + [(3, 4),(6, 8)]`
Find x and y from the given equations:
`[(-8, x)] + [(y, -2)] = [(-3, 2)]`
Given : M = `[(5, -3),(-2, 4)]`, find its transpose matrix Mt. If possible, find Mt – M
State, with reason, whether the following is true or false. A, B and C are matrices of order 2 × 2.
(A + B) . C = A . C + B . C
If M = `[(2,1),(1,-2)] `; find M2, M3 and M5.
Classify the following matrix :
`|(1 , 1),(0,9)|`
Find the values of a, b, c and d, if `|("a + 3b", 3"c" + "d"),(2"a" - "b" , "c" - 2"d")| = |(5 , 8),(3 , 5)|`
If A = `|(1,9,4),(5 , 0 , 3)|` find A'
If A = `|(3,-2),(-1 , 4)|` , B = `|(2"a"),(1)|` , C = `|(-4),(5)|` , D = `|(2),("b")|` and AB + 2C = 4D then find the values of a and b.
Solve the equation x + y = 4 and 2x - y = 5 using the method of reduction.