मराठी

Let Sk = ∑r=1ktan-1(6r22r+1+32r+1). Then limk→∞ Sk = is equal to ______. -

Advertisements
Advertisements

प्रश्न

Let Sk = `sum_(r = 1)^k tan^-1(6^r/(2^(2r + 1) + 3^(2r + 1)))`. Then `lim_(k→∞)` Sk = is equal to ______.

पर्याय

  • `tan^-1(3/2)`

  • `cot^-1(3/2)`

  • `π/2`

  • `tan^-1(3)`

MCQ
रिकाम्या जागा भरा

उत्तर

Let Sk = `sum_(r = 1)^k tan^-1(6^r/(2^(2r + 1) + 3^(2r + 1)))`. Then `lim_(k→∞)` Sk = is equal to `underlinebb(cot^-1(3/2))`.

Explanation:

Given, Sk = `sum_(r = 1)^k tan^-1(6^r/(2^(2r + 1) + 3^(2r + 1)))`

⇒ Sk = `sum_(r = 1)^k tan^-1((6^r/9^r)/((2^(2r + 1) + 3^(2r + 1))/9^r))`

⇒ Sk = `sum_(r = 1)^k tan^-1{(((2^r.3^r)/(3^r.3^r)))/((2/3)^(2r).2+ ((3^(2r))/(3^(2r))).3)}`

⇒ Sk = `sum_(r = 1)^k tan^-1{(2/3)^r/(3 + 2.(2/3)^(2r))}`

⇒ Sk = `sum_(r = 1)^k tan^-1{(2/3)^r/(3(1 + (2/3).(2/3)^(2r)))}`

Let `(2/3)^r` = t

⇒ Sk = `sum_(r = 1)^k tan^-1{t/(3.(1 + (2/3)t^2))}`

⇒ Sk = `sum_(r = 1)^k tan^-1{(t /3)/(1 + (t).((2t)/3))}`

⇒ Sk = `sum_(r = 1)^k tan^-1{(t - (2t)/3)/(1 + (t).((2t)/3))}`

⇒ Sk = `sum_(r = 1)^k {tan^-1(t) - tan^-1((2t)/3)}`

⇒ Sk = `sum_(r = 1)^k {tan^-1(2/3)^r - tan^-1(2/3)^(r + 1)}`

⇒ Sk = `{tan^-1(2/3) - tan^-1(2/3)^2} + {tan^-1(2/3)^2 - tan^-1(2/3)^3} + {tan^-1(2/3)^3 - tan^-1(2/3)^4} + -------- + {tan^-1(2/3)^k - tan^-1(2/3)^(k + 1)}`

⇒ Sk = `tan^-1(2/3) - tan^-1(2/3)^(k + 1)`

⇒ `lim_(k→∞)(S_k) = lim_(k→∞){tan^-1(2/3) - tan^-1(2/3)^(k + 1)}`

⇒ S = `tan^-1(2/3) - tan^-1(0); lim_(k→∞)(2/3)^(k + 1)` = 0

⇒ S = `tan^-1(2/3) - 0`

⇒ S = `tan^-1(2/3)`

⇒ S = `cot^-1(3/2)`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×