Advertisements
Advertisements
प्रश्न
Let the mean and the variance of 5 observations x1, x2, x3, x4, x5 be `24/5` and `194/25` respectively. If the mean and variance of the first 4 observations are `7/2` and a respectively, then (4a + x5) is equal to ______.
पर्याय
13
15
17
18
उत्तर
Let the mean and the variance of 5 observations x1, x2, x3, x4, x5 be `24/5` and `194/25` respectively. If the mean and variance of the first 4 observations are `7/2` and a respectively, then (4a + x5) is equal to 15.
Explanation:
`barx` = `(sumx_i)/5` = `24/5`
⇒ `sumx_i` = 24
σ2 = `(sumx_i^2)/5 - (24/5)^2`
⇒ `194/25`
⇒ `sumx_i^2` = 154
x1 + x2 + x3 + x4 = 14
⇒ x5 = 10
σ2 = `(x_1^2 + x_2^2 + x_3^2 + x_4^2)/4 - 49/4` = a
`x_1^2 + x_2^2 + x_3^2 + x_4^2` = 4a + 49
`x_5^2` = 154 – 4a – 49
⇒ 100 = 105 – 4a
⇒ 4a = 5
⇒ a = `5/4`
4a + x5 = 5 + 10 = 15