मराठी

Let the mean and the variance of 5 observations x1, x2, x3, x4, x5 be 245 and 19425 respectively. If the mean and variance of the first 4 observations are 72 and a respectively -

Advertisements
Advertisements

प्रश्न

Let the mean and the variance of 5 observations x1, x2, x3, x4, x5 be `24/5` and `194/25` respectively. If the mean and variance of the first 4 observations are `7/2` and a respectively, then (4a + x5) is equal to ______.

पर्याय

  • 13

  • 15

  • 17

  • 18

MCQ
रिकाम्या जागा भरा

उत्तर

Let the mean and the variance of 5 observations x1, x2, x3, x4, x5 be `24/5` and `194/25` respectively. If the mean and variance of the first 4 observations are `7/2` and a respectively, then (4a + x5) is equal to 15.

Explanation:

`barx` = `(sumx_i)/5` = `24/5`

⇒ `sumx_i` = 24

σ2 = `(sumx_i^2)/5 - (24/5)^2`

⇒ `194/25`

⇒ `sumx_i^2` = 154

x1 + x2 + x3 + x4  = 14

⇒ x5 = 10

σ2 = `(x_1^2 + x_2^2 + x_3^2 + x_4^2)/4 - 49/4` = a

`x_1^2 + x_2^2 + x_3^2 + x_4^2` = 4a + 49

`x_5^2` = 154 – 4a – 49

⇒ 100 = 105 – 4a

⇒ 4a = 5

⇒ a = `5/4`

4a + x5 = 5 + 10 = 15

shaalaa.com
Variance
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×