Advertisements
Advertisements
प्रश्न
Let the population of rabbits surviving at a time t be governed by the differential equation `(dp(t))/dt = 1/2p(t) - 200`. If p(0) = 100, then p(t) equals ______
पर्याय
`600 - 500e^{t/2}`
`400 - 300e^{(-t)/2}`
`400 - 300e^{t/2}`
`300 - 200e^{(-t)/2}`
उत्तर
Let the population of rabbits surviving at a time t be governed by the differential equation `(dp(t))/dt = 1/2p(t) - 200`. If p(0) = 100, then p(t) equals `underline(400 - 300e^{t/2})`.
Explanation:
`(dp(t))/dt = 1/2p(t) - 200`
Integrating on both sides, we get
`int(d(p(t)))/(1/2p(t) - 200) = intdt + c_1`
⇒ `2log((p(t))/2 - 200) = t + c_1`
= `(p(t))/2 - 200 = e^{t/2} c, ("where" c = e^{(c_1)/2})` ................(i)
Putting t = 0, we get
`(p(0))/2 - 200 = e^0 c`
⇒ `100/2 - 200 = c ⇒ c = -150`
∴ `(p(t))/2 - 200 = e^{1/2}(-150)` ........[From (i)]
⇒ p(t) = `400 - 300e^{t/2}`