मराठी

Let X1, X2, ..., Xn Be Values Taken by a Variable X and Y1, Y2, ..., Yn Be the Values Taken by a Variable Y Such Yi = Axi + B, I = 1, 2,..., N. Then, (A) Var (Y) = A2 Var (X) (B) Var (X) = A2 Var (Y) - Mathematics

Advertisements
Advertisements

प्रश्न

Let x1x2, ..., xn be values taken by a variable X and y1y2, ..., yn be the values taken by a variable Y such that yi = axi + bi = 1, 2,..., n. Then,

पर्याय

  • Var (Y) = a2 Var (X)

  • Var (X) = a2 Var (Y)

  •  Var (X) = Var (X) + b

  • none of these

     
MCQ

उत्तर

 Var (Y) = a2 Var (X)

 Var (X)=i=1n(xiX¯)2n where Mean (X)=i=1nxin

 Var (Y)=i=1n(yiY)2n and Y=i=1nyin

 We have ,

yi=axi+b

Y=i=1nyin

=i=1naxi+bn

=ai=1nxin+nbn

=aX+b

 Var (Y)=i=1n(yiY)2n

=i=1n{axi+b(aX+b)}2n

=i=1n(axiaX)2n

=a2i=1n(xiX)2n

=a2 Var (X)

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 32: Statistics - Exercise 32.9 [पृष्ठ ५१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 32 Statistics
Exercise 32.9 | Q 11 | पृष्ठ ५१

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Table below shows the frequency f with which 'x' alpha particles were radiated from a diskette 

x : 0 1 2 3 4 5 6 7 8 9 10 11 12
f : 51 203 383 525 532 408 273 139 43 27 10 4 2

Calculate the mean and variance.

 

 

Write the variance of first n natural numbers.

 

If x1x2, ..., xn are n values of a variable X and y1y2, ..., yn are n values of variable Y such that yi = axi + bi = 1, 2, ..., n, then write Var(Y) in terms of Var(X).

 

If a variable X takes values 0, 1, 2,..., n with frequencies nC0nC1nC2 , ... , nCn, then write variance X.


If two variates X and Y are connected by the relation Y=aX+bc , where abc are constants such that ac < 0, then

 

Find the variance and standard deviation for the following data: 57, 64, 43, 67, 49, 59, 44, 47, 61, 59


Calculate variance of the following data:

Class interval Frequency
4 – 8 3
8 – 12 6
12 – 16 4
16 – 20 7

Mean (x¯)=fixifi=3×6+6×10+4×14+7×1820 = 13


Calculate mean, variation and standard deviation of the following frequency distribution:

Classes Frequency
1 – 10 11
10 – 20 29
20 – 30 18
30 – 40 4
40 – 50 5
50 – 60 3

Variance of the data 2, 4, 5, 6, 8, 17 is 23.33. Then variance of 4, 8, 10, 12, 16, 34 will be ______.


Consider the numbers 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. If 1 is added to each number, the variance of the numbers so obtained is ______.


Consider the first 10 positive integers. If we multiply each number by –1 and then add 1 to each number, the variance of the numbers so obtained is ______.


The following information relates to a sample of size 60 x2 = 18000 and x = 960, then the variance is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.