Advertisements
Advertisements
प्रश्न
Let `y = f(x)` be the equation of the curve, then equation of normal is
पर्याय
`y - y_o = - 1/m (x - m)`
`x - x_o + m(y - y_0)` = 0
`((dy)/(dx))Δx`
Both `y - y_o = - 1/m (x - m)` and `x - x_o + m(y - y_0)` = 0
MCQ
उत्तर
Both `y - y_o = - 1/m (x - m)` and `x - x_o + m(y - y_0)` = 0
Explanation:
Let `y(x)` be the equation of the curve, then education of the normal is
`y - y_o = - 1/m`
or `x - x_o + m(y - y_o)` = 0
Where m = Slope of the tangent
`[(dy)/(dx)]_(x_o * y_o) = f^'(x_o)`
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?