Advertisements
Advertisements
प्रश्न
Let y = y(x) be the solution of the differential equation, `(x^2 + 1)^2 ("dy")/("d"x) + 2x(x^2 + 1)"y"` = 1, such that y(0) = 0. If `sqrt("ay")(1) = π/32` then the value of 'a' is ______.
पर्याय
`1/2`
1
`1/16`
`1/4`
उत्तर
Let y = y(x) be the solution of the differential equation, `(x^2 + 1)^2 ("dy")/("d"x) + 2x(x^2 + 1)"y"` = 1, such that y(0) = 0. If `sqrt("ay")(1) = π/32` then the value of 'a' is `underlinebb(1/16)`.
Explanation:
`(x^2 + 1)^2 ("dy")/("d"x) + 2x(x^2 + 1)"y"` = 1
`("dy")/("d"x) + (2xy)/(x^2 + 1) = 1/(x^2 + 1)^2`
From linear differential equation
P = `(2x)/(x^2 + 1)` Q = `1/(x^2 + 1)^2`
`"ye"^(int(2x)/(x^2 + 1)"d"x) = int1/(x^2 + 1)^2 "e"^(int(2x)/(x^2 + 1)"d"x) "d"x + "C"`
`"ye"^(log(x^2 + 1)) = int1/(x^2 + 1)^2 "e"^(log(x^2 + 1)) "d"x + "C"`
y(x2 + 1) = `int1/(x^2 + 1) "d"x + "C"`
y(x2 + 1) = tan–1(x) + C
y(0) = 0 ...(Given)
⇒ C = 0
y(x2 + 1) = tan–1x
`sqrt("a")"y"(1) = π/32` then a = ?
Put x = 1 ...(i)
y(1){1 + 1} = tan–11
y(1) = `π/8`
Substituting in equation (i)
`sqrt("a") xx π/8 = π/32`
a = `1/16`