Advertisements
Advertisements
प्रश्न
Let z be a complex number such that `|(z - i)/(z + 2i)|` = 1 and |z| = `5/2`. Then the value of |z + 3i| is ______.
पर्याय
`sqrt(10)`
`7/2`
`15/4`
`2sqrt(3)`
MCQ
रिकाम्या जागा भरा
उत्तर
Let z be a complex number such that `|(z - i)/(z + 2i)|` = 1 and |z| = `5/2`. Then the value of |z + 3i| is `underlinebb(7/2)`.
Explanation:
Let z = x + iy
Then, `|(z - i)/(z + 2i)|` = 1
⇒ x2 + (y – 1)2 = x2 + (y + 2)2
⇒ –2y + 1 = 4y + 4
⇒ 6y = –3
⇒ y = `-1/2`
∵ |z| = `5/2`
⇒ x2 + y2 = `25/4`
⇒ x2 = `24/4` = 6
∴ z = x + iy
⇒ z = `± sqrt(6) - i/2`
|z + 3i| = `sqrt(6 + 25/4)`
= `sqrt(49/4)`
⇒ |z + 3i| = `7/2`
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?