Advertisements
Advertisements
प्रश्न
lf f(x) = `(20^x + 3^x - 6^x - 10^x)/(1 - cos8x)`, for x ≠ 0
= `(k/16)log(10/3).log2`, for x = 0
is continuous at x = 0, then the value of k is ______
पर्याय
sin230°
`3^{log_3(1/2)}`
`root(3)(1/4)`
`(log_2 2)/3`
उत्तर
lf f(x) = `(20^x + 3^x - 6^x - 10^x)/(1 - cos8x)`, for x ≠ 0
= `(k/16)log(10/3).log2`, for x = 0
is continuous at x = 0, then the value of k is `underline(3^{log_3(1/2)})`.
Explanation:
Since, f(x) is continuous at x = 0.
∴ f(0) = `lim_{x→0}f(x)`
⇒ `(k/16)log(10/3) . log2`
= `lim_{x → 0} (20^x + 3^x - 6^x - 10^x)/(1 - cos8x)`
= `lim_{x → 0} ((10^x - 3^x)(2^x - 1))/(2sin^2 4x)`
= `lim_{x → 0} (((10^x - 1)/x - (3^x - 1)/x) . ((2^x - 1)/x))/(2 xx (sin^2 4x)/(16x^2) xx 16`
= `((log10 - log3)(log2))/32`
∴ `(k/16)log(10/3) . log2 = 1/32log(10/3)log2`
⇒ `k/16 = 1/32`
⇒ `k = 1/2`
⇒ k = `3^{log_3(1/2)}` ........`[∵ a^{log_a^x} = x]`