Advertisements
Advertisements
प्रश्न
lf f(x) = cos-1 `[(1 - (log x)^2)/(1 + (log x)^2)]`, then f' (e) = _______.
पर्याय
`1/"e"`
`2/"e"^2`
`2/"e"`
1
MCQ
उत्तर
lf f(x) = cos-1 `[(1 - (log x)^2)/(1 + (log x)^2)]`, then f' (e) = `underline(1/"e")`.
Explanation:
We have
f(x) = `cos^-1 [(1 - (log x)^2)/(1 + (log x)^2)]`
f(x) = `2tan^-1 (log x) [because cos^-1 ((1 - x^2)/(1 + x^2)) = 2 tan^-1 x]`
f'(x) = `2/(1 + (log x)^2) xx 1/x`
f'(e) = `2/(1 + 1) xx 1/"e"`
`= 1/"e"`
shaalaa.com
Higher Order Derivatives
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?