Advertisements
Advertisements
प्रश्न
`int [(log x - 1)/(1 + (log x)^2)]^2`dx = ?
पर्याय
`x/(1 + (log x)^2)`+ c
`x/(1 + (log x))`+ c
`x^2/(1 + (log x)^2)`+ c
`1/(1 + (log x)^2)`+ c
MCQ
उत्तर
`x/(1 + (log x)^2)`+ c
Explanation:
Let I = `int ((log x - 1)/(1 + (log x)^2))^2`dx
Put, logx = t ⇒ x = ef ⇒ dx = et dt
`therefore "I" = int (("t - 1")^2)/((1 + "t"^2)^2) "e"^"t" "dt"`
I = `int "e"^"t" ((1 + "t"^2 - 2"t")/(1 + "t"^2)^2)`dt
I = `int(1/("1 + t"^2) - "2t"/(1 + "t"^2)^2)`dt
Here, f(t) = `1/"1+ t"^2` or f'(t) = `(- "2t")/((1 + "t"^2)^2)`
`therefore "I" = "e"^"t"/(1 + "t"^2)` + c ....[∵ ∫ex f(x) + f'(x) dx = ex f(x) + c]
`=> "I" = x/(1 + (log x)^2)` + c
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?