मराठी

∫[logx-11+(logx)2]2dx = ? -

Advertisements
Advertisements

प्रश्न

`int [(log x - 1)/(1 + (log x)^2)]^2`dx = ?

पर्याय

  • `x/(1 + (log x)^2)`+ c

  • `x/(1 + (log x))`+ c

  • `x^2/(1 + (log x)^2)`+ c

  • `1/(1 + (log x)^2)`+ c

MCQ

उत्तर

`x/(1 + (log x)^2)`+ c

Explanation:

Let I = `int ((log x - 1)/(1 + (log x)^2))^2`dx

Put, logx = t ⇒ x = ef ⇒ dx = et dt

`therefore "I" = int (("t - 1")^2)/((1 + "t"^2)^2) "e"^"t" "dt"`

I = `int "e"^"t" ((1 + "t"^2 - 2"t")/(1 + "t"^2)^2)`dt

I = `int(1/("1 + t"^2) - "2t"/(1 + "t"^2)^2)`dt

Here, f(t) = `1/"1+ t"^2` or f'(t) = `(- "2t")/((1 + "t"^2)^2)`

`therefore "I" = "e"^"t"/(1 + "t"^2)` + c   ....[∵ ∫ex f(x) + f'(x) dx = ex f(x) + c]

`=> "I" = x/(1 + (log x)^2)` + c

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×