Advertisements
Advertisements
प्रश्न
Making use of the cube root table, find the cube root
833 .
उत्तर
We have: \[830 < 833 < 840 \Rightarrow \sqrt[3]{830} < \sqrt[3]{833} < \sqrt[3]{840}\]
From the cube root table, we have: \[\sqrt[3]{830} = 9 . 398 \text{ and } \sqrt[3]{840} = 9 . 435\]
For the difference (840 - 830), i.e., 10, the difference in values
\[= 9 . 435 - 9 . 398 = 0 . 037\]
∴ For the difference (833 - 830), i.e., 3, the difference in values
APPEARS IN
संबंधित प्रश्न
Find the cube root of the following numbers by the prime factorisation method.
27000
Using the method of successive subtraction examine whether or not the following numbers is perfect cube 792 .
\[\sqrt[3]{480} = \sqrt[3]{3} \times 2 \times \sqrt[3]{. . .}\]
Making use of the cube root table, find the cube root
250.
Making use of the cube root table, find the cube root
133100 .
Find the cube root of 13824 by prime factorisation method.
Find the cube root of -1331.
Find the cube root of 1728.
Find `root(3)(0.125)`.
Using prime factorisation, find the cube roots of 2197