मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी वाणिज्य इयत्ता ११

Maximize: z = 3x1 + 4x2 subject to 2x1 + x2 ≤ 40, 2x1 + 5x2 ≤ 180, x1, x2 ≥ 0. In the LPP, which one of the following is feasible comer point? - Business Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Maximize: z = 3x1 + 4x2 subject to 2x1 + x2 ≤ 40, 2x1 + 5x2 ≤ 180, x1, x2 ≥ 0. In the LPP, which one of the following is feasible comer point?

पर्याय

  • x1 = 18, x2 = 24

  • x1 = 15, x2 = 30

  • x1 = 2.5, x2 = 35

  • x1 = 20.5, x2 = 19

MCQ

उत्तर

x1 = 2.5, x2 = 35

Explanation:

z = 3x1 + 4x2

Let us solve the equations

2x1 + x2 = 40 ………(1)

2x1 + 5x2 = 180 ……….(2)

− 4x2 = − 140 ....[Equation (1) − (2)]

x2 = 35

We have 2x1 + x2 = 40
2x1 + 35 = 40

2x1 = 5

x1 = 2.5

shaalaa.com
Linear Programming Problem (L.P.P.)
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Operations Research - Exercise 10.3 [पृष्ठ २५०]

APPEARS IN

सामाचीर कलवी Business Mathematics and Statistics [English] Class 11 TN Board
पाठ 10 Operations Research
Exercise 10.3 | Q 2 | पृष्ठ २५०

संबंधित प्रश्‍न

A company manufactures two types of chemicals Aand B. Each chemical requires two types of raw material P and Q. The table below shows number of units of P and Q required to manufacture one unit of A and one unit of B and the total availability of P and Q.

Chemical→ A B Availability
Raw Material ↓
P 3 2 120
Q 2 5 160

The company gets profits of ₹ 350 and ₹ 400 by selling one unit of A and one unit of B respectively. (Assume that the entire production of A and B can be sold). How many units of the chemicals A and B should be manufactured so that the company gets a maximum profit? Formulate the problem as LPP to maximize profit.


Solve the following LPP by graphical method:

Minimize z = 8x + 10y, subject to 2x + y ≥ 7, 2x + 3y ≥ 15, y ≥ 2, x ≥ 0, y ≥ 0.


The maximum value of z = 5x + 3y subject to the constraints 3x + 5y ≤ 15, 5x + 2y ≤ 10, x, y ≥ 0 is ______.


The half-plane represented by 3x + 2y < 8 contains the point ______.


Solve the following LPP:

Minimize z = 4x + 2y

Subject to 3x + y ≥ 27, x + y ≥ 21, x + 2y ≥ 30, x ≥ 0, y ≥ 0


A company manufactures two types of chemicals A and B. Each chemical requires two types of raw material P and Q. The table below shows number of units of P and Q required to manufacture one unit of A and one unit of B.

Raw Material \Chemical A B Availability
p 3 2 120
Q 2 5 160

The company gets profits of ₹ 350 and ₹ 400 by selling one unit of A and one unit of B respectively. Formulate the problem as L.P.P. to maximize the profit.


Fill in the blank :

A dish washing machine holds up to 40 pieces of large crockery (x) This constraint is given by_______.


State whether the following is True or False :

Saina wants to invest at most ₹ 24000 in bonds and fixed deposits. Mathematically this constraints is written as x + y ≤ 24000 where x is investment in bond and y is in fixed deposits.


The point of which the maximum value of z = x + y subject to constraints x + 2y ≤ 70, 2x + y ≤ 90, x ≥ 0, y ≥ 0 is obtained at


The maximum value of Z = 3x + 5y, subject to 3x + 2y ≤ 18, x ≤ a, y ≤ 6, x, y ≥ 0 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×