Advertisements
Advertisements
प्रश्न
Multiple choice questions:
In an ordinary annuity, payments or receipts occur at ______
पर्याय
Beginning of each period
End of each period
Mid of each period
Quarterly basis
उत्तर
End of each period
APPEARS IN
संबंधित प्रश्न
Find accumulated value after 1 year of an annuity immediate in which ₹ 10,000 is invested every quarter at 16% p.a. compounded quarterly. [Given (1.04)4 = 1.1699]
Find the present value of an ordinary annuity of ₹63,000 p.a. for 4 years at 14% p.a. compounded annually. [Given (1.14)−4 = 0.5921]
A lady plans to save for her daughter’s marriage. She wishes to accumulate a sum of ₹4,64,100 at the end of 4 years. What amount should she invest every year if she gets an interest of 10% p.a. compounded annually? [Given (1.1)4 = 1.4641]
Find the number of years for which an annuity of ₹500 is paid at the end of every year, if the accumulated amount works out to be ₹1,655 when interest is compounded annually at 10% p.a.
Find the accumulated value of annuity due of ₹1,000 p.a. for 3 years at 10% p.a. compounded annually. [Given (1.1)3 = 1.331]
Find the present value of an annuity due of ₹ 600 to be paid quarterly at 32% p.a. compounded quarterly. [Given (1.08)−4 = 0.7350]
Fill in the blank :
The payment of each single annuity is called __________.
Fill in the blank :
The intervening time between payment of two successive installments is called as ___________.
State whether the following is True or False :
Annuity certain begins on a fixed date and ends when an event happens.
State whether the following is True or False :
Annuity contingent begins and ends on certain fixed dates.
State whether the following is True or False :
The future value of an annuity is the accumulated values of all installments.
If for an immediate annuity r = 10% p.a., P = ₹ 12,679.46 and A = ₹ 18,564, then the amount of each annuity paid is ______
If payments of an annuity fall due at the beginning of every period, the series is called annuity ______
A 35-year old person takes a policy for ₹ 1,00,000 for a period of 20 years. The rate of premium is ₹ 76 and the average rate of bonus is ₹ 7 per thousand p.a. If he dies after paying 10 annual premiums, what amount will his nominee receive?
The future amount, A = ₹ 10,00,000
Period, n = 20, r = 5%, (1.025)20 = 1.675
A = `"C"/"I" [(1 + "i")^"n" - 1]`
I = `5/200` = `square` as interest is calculated semi-annually
A = 10,00,000 = `"C"/"I" [(1 + "i")^"n" - 1]`
10,00,000 = `"C"/0.025 [(1 + 0.025)^square - 1]`
= `"C"/0.025 [1.675 - 1]`
10,00,000 = `("C" xx 0.675)/0.025`
C = ₹ `square`
For an annuity due, C = ₹ 2000, rate = 16% p.a. compounded quarterly for 1 year
∴ Rate of interest per quarter = `square/4` = 4
⇒ r = 4%
⇒ i = `square/100 = 4/100` = 0.04
n = Number of quarters
= 4 × 1
= `square`
⇒ P' = `(C(1 + i))/i [1 - (1 + i)^-n]`
⇒ P' = `(square(1 + square))/0.04 [1 - (square + 0.04)^-square]`
= `(2000(square))/square [1 - (square)^-4]`
= 50,000`(square)`[1 – 0.8548]
= ₹ 7,550.40