Advertisements
Advertisements
प्रश्न
Multiply: 2m2 − 3m − 1 and 4m2 − m − 1
उत्तर
(2m2 − 3m − 1) (4m2 − m − 1)
= 2m2(4m2 − m − 1) − 3m(4m2 − m − 1) −1(4m2 − m −1)
= 8m4 − 2m3− 2m2 − 12m3 + 3m2 + 3m − 4m2 + m + 1
= 8m4 − 14m3 − 6m2 + 3m2 + 4m + 1
= 8m4 − 14m3 − 3m2 + 4m + 1
APPEARS IN
संबंधित प्रश्न
Find the product of the following pair of monomial.
4, 7p
Find the product of the following pair of monomial.
4p3, − 3p
Find the areas of rectangles with the following pairs of monomials as their lengths and breadths, respectively.
(p, q); (10m, 5n); (20x2, 5y2); (4x, 3x2); (3mn, 4np)
Complete the table of products.
First monomial→ |
2x |
–5y |
3x2 |
–4xy |
7x2y |
–9x2y2 |
Second monomial ↓ |
||||||
2x | 4x2 | ... | ... | ... | ... | ... |
–5y | ... | ... | –15x2y | ... | ... | ... |
3x2 | ... | ... | ... | ... | ... | ... |
– 4xy | ... | ... | ... | ... | ... | ... |
7x2y | ... | ... | ... | ... | ... | ... |
–9x2y2 | ... | ... | ... | ... | ... | ... |
Multiply: 5a − 1 by 7a − 3
Multiply: 12a + 5b by 7a − b
Multiply: `-2/3"a"^7"b"^2` and `-9/4"a""b"^5`
Multiply: `2"x"+1/2"y"` and `2"x"-1/2"y"`
A total of 90 currency notes, consisting only of ₹ 5 and ₹ 10 denominations, amount to ₹ 500. Find the number of notes in each denomination.
Multiply the following:
–5a2bc, 11ab, 13abc2