Advertisements
Advertisements
प्रश्न
निम्न द्विघात बहुपद के शून्यक ज्ञात कीजिए और शून्यकों तथा गुणांकों के बीच के संबंध की सत्यता की जाँच कीजिए:
3x2 - x - 4
उत्तर
3x2 – x – 4
= 3x2 – 4x + 3x – 4
= x(3x - 4) + 1(3x - 4)
= (3x - 4)(x + 1)
p(x) = 0 के लिए हमारे पास है,
या तो (x + 1) = 0
x = -1
या 3x - 4 = 0
`x = 4/3`
∴ 3x2 - x - 4 के शून्यक -1 और `4/3` हैं
अब,
शून्यकों का योग = `-("गुणांक " x)/("गुणांक " x^2)`
= `(-1) + 4/3`
= `(-(-1))/3`
= `1/3 = 1/3`
और शून्यकों का गुणनफल `"अचर पद"/("गुणांक " x^2)`
`(-1)xx 4/3 = (-4)/3`
= `(-4)/3 = (-4)/3`
इस प्रकार, बहुपद 3x2 - x - 4 में शून्यकों और गुणांकों के बीच संबंध सत्यापित है।
APPEARS IN
संबंधित प्रश्न
एक द्विघात बहुपद ज्ञात कीजिए, जिसके शुन्यकों के योग तथा गुणनफल क्रमशः दी गई संख्याएँ हैं:
4, 1
निम्न द्विघात बहुपद के शून्यक ज्ञात कीजिए और शून्यकों तथा गुणांकों के बीच के संबंध की सत्यता की जाँच कीजिए:
4u2 + 8u
एक द्विघात बहुपद ज्ञात कीजिए, जिसके शुन्यकों के योग तथा गुणनफल क्रमशः दी गई संख्याएँ हैं:
`1/4, -1`
एक द्विघात बहुपद ज्ञात कीजिए, जिसके शुन्यकों के योग तथा गुणनफल क्रमशः दी गई संख्याएँ हैं:
`0, sqrt5`
एक द्विघात बहुपद ज्ञात कीजिए, जिसके शुन्यकों के योग तथा गुणनफल क्रमशः दी गई संख्याएँ हैं:
1, 1
एक त्रिघात बहुपद प्राप्त कीजिए जिसके शून्यकों का योग, दो शून्यकों को एक साथ लेकर उनके गुणनफलों का योग तथा तीनों शून्यकों के गुणनफल क्रमशः 2, -7, -14 हों।
शून्यक –2 और 5 वाले बहुपदों की संख्या है
यदि एक त्रिघात बहुपद x3 + ax2 − bx + c के तीनों शून्यक धनात्मक हैं, तो a, b और c में से कम से कम एक अवश्य ही ऋणेतर होगा।
दिया है कि त्रिघात बहुपद x3− 6x2 + 3x + 10 के शून्यक a, a + b और a + 2b के रूप के हैं, जहाँ a और b, कोई वास्तविक संख्याएँ हैं। a और b के मान तथा साथ ही दिए हुए बहुपद के शून्यक ज्ञात कीजिए।
त्रिघात बहुपद `6x^3 + sqrt2x^2 - 10x - 4sqrt2` का एक शून्यक `sqrt2` दिया है। इसके अन्य दो शून्यक ज्ञात कीजिए।