Advertisements
Advertisements
प्रश्न
नमक का एक गोलाकार गेंद पानी में इस प्रकार घुल रहा है कि किसी क्षण उसके आयतन के घटने की दर उसके पृष्ठीय क्षेत्रफल के समानुपाती है। सिद्ध कीजिए कि उसकी त्रिज्या एक अचर दर से घट रही है।
बेरीज
उत्तर
नमक का गेंद गोलाकार होता है
∴ गेंद का आयतन, V = `4/3 pi"r"^3`
जहाँ r = गेंद की त्रिज्या
प्रश्न के अनुसार, `"dV"/"dt" oo "S"`
जहाँ S = गेंद का पृष्ठीय क्षेत्रफल
⇒ `"d"/"dt" (4/3 pi"r"^3) oo 4pi"r"^2` .....[∵ S = 4πr2]
⇒ `4/3 pi * 3"r"^2 * "dr"/"dt" oo 4pi"r"^2`
⇒ `4pi"r"^2 * "dr"/"dt" = "K" * 4pi"r"^2` ......(K = आनुपातिकता का स्थिरांक)
⇒ `"dr"/"dt" = "K" * 4pi"r"^2`
∴ `"dr"/"dt" = "K" * 1` = K
अतः गेंद की त्रिज्या स्थिर दर से घट रही है।
shaalaa.com
अवकलज के अनुप्रयोग
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?