Advertisements
Advertisements
प्रश्न
Number of values of x where the function
f(x) = `{{:((tanxlog(x - 2))/(x^2 - 4x + 3); x∈(2, 4) - {3, π}),(1/6tanx; x = 3"," π):}`
is discontinuous, is ______.
पर्याय
2
1
0
Infinitely many
उत्तर
Number of values of x where the function
f(x) = `{{:((tanxlog(x - 2))/(x^2 - 4x + 3); x∈(2, 4) - {3, π}),(1/6tanx; x = 3"," π):}`
is discontinuous, is 1.
Explanation:
f(x) = `(tanxlog(x - 2))/((x^2 - 4x + 3)); x∈(2, 4) - {3, π}`
`lim_(x→π)f(x) = lim_(x→π)(tanxlog(x - 2))/(x^2 - 4x + 3)`
= `(tanπ log(π - 2))/(π^2 - 4π + 3)` = 0
and f(π) = `1/6tanπ` = 0
∴ f(x) is continuous at x = π
f(3) = `1/6tan3` and `lim_(x→3) (tanxlog(x - 2))/(x^2 - 4x + 3)`
= `lim_(x→3)(tanx log(x - 2))/((x - 1)(x - 3))`
i.e., `lim_(x→3)f(x) = lim_(x→3) (tanxlog(1 + x - 3))/((x - 1)(x - 3))`
= `lim_(x→3) tanx/(x - 1) xx lim_(x→3) (log(1 + x - 3))/(x - 3)`
∴ `lim_(x→3)f(x) = tan3/2 xx 1 = 1/2tan3`
⇒ `lim_(x→3) f(x) ≠ f(3)`
Hence, f(x) is discontinuous at x = 3.
The number of values of x is 1.