मराठी

Obtain All Zeros of the Polynomial F(X) = X4 − 3x3 − X2 + 9x − 6, If Two of Its Zeros Are `-sqrt3` and `Sqrt3` - Mathematics

Advertisements
Advertisements

प्रश्न

Obtain all zeros of the polynomial f(x) = x4 − 3x3 − x2 + 9x − 6, if two of its zeros are `-sqrt3` and `sqrt3`

उत्तर

we know that, if x = a is a zero of a polynomial, then x - a is a factor of f(x).

since `-sqrt3` and `sqrt3` are zeros of f(x).

Therefore

`(x+sqrt3)(x-sqrt3)=x^2+sqrt3x-sqrt3x-3`

= x2 - 3

x2 - 3 is a factor of f(x). Now , we divide f(x) = x4 − 3x3 − x2 + 9x − 6 by g(x) = x2 - 3 to find the other zeros of f(x).

By using that division algorithm we have,

f(x) = g(x) x q(x) + r(x)

x4 − 3x3 − x2 + 9x − 6 = (x2 - 3)(x2 - 3x + 2) + 0

x4 − 3x3 − x2 + 9x − 6 = (x2 - 3)(x2 - 2x + 1x + 2)

x4 − 3x3 − x2 + 9x − 6 = (x2 - 3)[x(x - 2) - 1(x - 2)]

x4 − 3x3 − x2 + 9x − 6 = (x2 - 3)[(x - 1)(x - 2)]

x4 − 3x3 − x2 + 9x − 6 `= (x - sqrt3)(x+sqrt3)(x-1)(x-2)`

Hence, the zeros of the given polynomials are `-sqrt3`, `sqrt3`, +1 and +2.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Polynomials - Exercise 2.3 [पृष्ठ ५७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 2 Polynomials
Exercise 2.3 | Q 5 | पृष्ठ ५७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×